
AD-A261 952

Consistency Management for
Virtually Indexed Caches

Bob Wheeler and Brian N. Bershad -C

October 1992 , -

CMU-CS-92-182 i-sC,33 ,

School of Computer Science \4 "• E
Carnegie Mellon University.
Pittsburgh, PA 15213-3890

Presented at the Fyfih Symposium on Architectural Support for Programming
Languages and Operating Systems, ASPLOS V, Seville, Spain, October 1992.

Abstract

A virtually indexed cache can improve performance by allowing cache lookup and address translation to occur in parallel,
thus reducing processor cycle time. Unlike physically indexed caches, virtually indexed caches create consistency
problems because a physical address may be represented in more than one cache line when it has been accessed through
more than one virtual address. Write-back virtually indexed caches create additional inconsistencies because memory
may become stale with respect to the cache.

In this paper we examine the problem of consistency management for a virtually indexed write-back cache. We assume
that the hardware does not support intra-cache consistency. We present a model and software implementation strategy for
maintaining consistency with virtually indexed caches.

We present measurements from an implementation of this model on the H' in the context of the Mach operating system.
Our measurements show that a virtually indexed cache can be managed with nearly the same cost as that required to
manage a physically indexed one, even when used by a virtual memory system that encourages and exploits sharing.

This research was sponsored in part by the Defense Advanced Research Projects Agency, Information Science and Technology Office.
under the title Research on Parallef Computing", ARPA Order No. 7330, issued by DARPNCMO under Contract MDA972-9-
C-0035, by the Open Software Foundation (OSF), and by a grant from the Hewlett-Pckard Corporation. B. Bershad was partially
supporte y a National Science Foundation Presidential Young Investigator Award. The views and conclusions contained in this
document are those of the authors and should not be interpreted as representifig the official policies, either expressed or implied, of
DARPA, OSF. HP, the NSF, or the U.S. government.

Approved fo Pub:lic 9ele3-0

o8 Z4 1) 93-04589
~~A 4% Am|Bl~

Keywords: Virtual memory, microkeinels, architecture, performance, memory system, cache

-- 1A• ccesion For

NTIS CRA&I
DTIC TAB

Consistency Management for Unannounced Fl
Virtually Indexed Caches Justification

By

Distribution!

Availability Codes

Avail aid / or
Dist Special

Abstract Introduction

A virtually indexed cache can improve performance by Virtually indexed caches are becoming increasingly

allowing cache lookup and address translation to occur common as architects try to reduce processor cycle
in parallel, thus reducing processor cycle time. Un- times [Kohn 89, Lee 89]. With a virtually indexed

like physically indexed caches, virtually indexed caches cache, the virtual address of a data item selects the

create consistency problems because a physical address cache line in which the item should reside. In con-

may be represented in more than one cache line when trast, with a physically indexed cache, the virtual ad-

it has been accessed through more than one virtual ad- dress must first be translated into its corresponding
dress. Write-back virtually indexed caches create ad- physical address, and that address is used to select the

ditional inconsistencies because memory may become cache line. Virtually indexed caches offer a speed im-

stale with respect to the cache. provement over physically indexed caches, since a cache
lookup can occur in parallel with address translation.

In this paper we examine the problem of consistency Comparable performance is possible with a physically
management for a virtually indexed write-back cache. indexed cache only by tying cache size and associativity
We assume that the hardware does not support intra- to page size [Jouppi 88], by reducing the associativity
cache consistency. We present a model and software im- of virtual to physical mappings [Chiueh & Katz 921,
plementation strategy for maintaining consistency with or by introducing a separate pipeline stage for address
virtually indexed caches. translation [DEC Alpha 92].

We present measurements from an implementation Despite their low-level performance advantages, vir-
of this model on the HP 9000 Series 700 in the con- tually indexed caches have generally been considered
text of the Mach operating system. Our measurements less desirable for operating systems that support arbi-
show that a virtually indexed cache can be managed trary memory sharing within and between programs.
with nearly the same cost as that required to manage Since the selection of a cache line is based on a vir-
a physically indexed one, even when used by a virtual tual address, the contents of a physical address that has
memory system that encourages and exploits sharing, been mapped at more than one virtual address may ap-

pear in more than one line in the cache at a time. This
creates an internal cache consistency problem. The
problem becomes more acute with a write-back virtu-

This research was sponsored in part by The Defense Ad- ally indexed cache because memory can become stale
vanced Research Projects Agency, Information Science and Tech- with respect to the cache.
nology Office, under the title "Research on Parallel Computing",
ARPA Order No. 7330, issued by DARPA/CMO under Contract In this paper we describe a solution to the problems
MDA972-90-C-0035, by the Open Software Foundation (OSF), of internal cache consistency for machines with virtu-
and by a grant from the Hewlett-Packard Corporation. Bershad
was partially supported by a National Science Foundation Pres- ally indexed write-back caches. Our solution is based
idential Young Investigator Award. on a simple model of consistency that captures the be-

The views and conclusions contained in this document are havior of virtual memory, physical memory, and cache
those of the authors and should not be interpreted as represent- memory. The model defines the consistency of virtually
ing the official policies, either expressed or implied, of DARPA,OSF, HP, the NSF, or the U.S. government. indexed cache lines in terms of the operations that are

performed on memory (CPU-read, CPU-write, DMA-

read, and DMA-write) and the cache (purge, flush).
The model lends itself to a straightforward software so-
lution that relies on virtual memory hardware to deny
access to potentially inconsistent data.

From the standpoint of performance, two aspects
of the consistency model are important. First, the

2

model delays cache control operations for as long as we might be taking an ad hoc approach to consistency
possible, ensuring consistency only when not doing so which would result in a less-than-optimal implementa-
would cause the memory system (the cache plus pri- tion, we sought first to define a consistency model that
mary memory) to transfer a stale value to either the would enable us to manage a virtually indexed cache
CPU or a device. In contrast, many previous solutions correctly and efficiently.
have forced the memory system into a consistent state Our consistency model is therefore intended to meet
at the time that the inconsistency would be created, two goals. First, we want to make it easier to reason
rather than when it would be detected. Second, our about the cache control and virtual memory operations
model naturally captures the effect of different virtual that are required to ensure consistency. This allows us
addresses that map to both the same physical address to evaluate an implementation strategy in terms of cor-
and to the same line within the virtually indexed cache. rectness (does it ensure consistency?), necessity (does
Such aligned addresses do not create consistency prob- it provide more consistency than is actually needed?),
lems and therefore do not require any coneistency man- and efficiency (can certain operations be combined in
agement. * order to achieve the same level of consistency with lower

cost?). Our model permits inconsistencies within the
memory system as long as those inconsistencies never

1.1 Motivation and goals result in stale data being returned to either the CPU
or a device. Moreover, our model encourages the oper-

We have implemented the machine-dependent layer ating system to select virtual addresses that naturally
of the virtual memory system [Rashid et al. 87] in align within the cache so that consistency operations
Mach 3.0 [Accetta et aT . 86] for the HP 9000 Se. can be avoided. The use of these techniques has re-
ries 700 [Lee 89]. The HP 9000 Series 700 uses a suited in application performance improvements of up

high-performance RISC-based microprocessor (HP PA- to i0%.

RISC) with separate instruction and data caches that o sit h

are direct mapped, virtually indexed, and physically Our second goal is to better understand the virtual

tagged. The data cache is write-back. There is no hard- cache management strategies that have been imple-

ware support for consistency when a physical address mented in other systems. When we first began our

is represented at more than one cache line. I/O devices work, we surveyed the literature to understand the ap-

that rely on DMA do not snoop the cache. A trans- proaches taken by others [Cheng 87, Chao et al. 90].

lation lookaside buffer (TLB) translates virtual page We found it difficult to describe succinctly the differ-

frames into physical page frames in parallel with cache ences between the systems because we had no corn-

lookup. At the end of the cache lookup, the physical mon reference point. Our model provides that refer-

frame number is compared to the cache tag. If they ence point, and allows us to compare our solution to

match, the cache access hits. Otherwise the data is re- previous ones.
trieved from memory and stored in the cache. If the
previous data in the cache line is dirty, it is first writ-
ten back to memory before being replaced. For the 1.2 The rest of this paper
purposes of cache management, the cache exports two
operations to the processor. These are flush virtual ad- In Section 2 we describe the consistency and perfor-
dress and purge virtual address. Both remove the cache mance issues that arise in the use of a virtually indexed
line containing the specified virtual address from the cache. In Section 3 we present a consistency model for
cache. The flush will write the line back to main mem- such caches. In Section 4 we describe an implementa-
ory if it is dirty. tion of the model that relies on the virtual memory sys-

As we examined the consistency problem for virtu- tem. We also describe changes to the Mach operating
ally indexed caches, we began to appreciate the many system that eliminate unnecessary cache inconsisten-
different kinds of inconsistencies that can occur. For cies. In Section 5 we present measurements that show
example, a cache line can become stale with respect the relative impact of our model and implementation
to other cache lines or memory due to writes by the strategy. In Section 6 we discuss related work. Finally,
CPU or a DMA device, or primary memory can be- in Section 7 we present our conclusions.
come stale with respect to the cache due to the cache's
write-back policy. When we considered strategies for
resolving the inconsistencies, we frequently discovered
inconsistencies that could be ignored, or that could be 2 Virtually indexed cache con-
handled lazily. For example, when zeroing data known
to be stale in the cache, there is no reason to first purge sistency
the data as it will be entirely overwritten before being
read. On the other hand, when the CPU reads data In this section we discuss several issues that arise when
provided by a DMA device, previously stale data in the implementing a memory management system for a ma-
cache must first be purged to ensure that the device's chine with a virtually indexed write-back cache. These
new data is not improperly shadowed. Concerned that issues relate to aliases, new mappings, and DMA.

3

2.1 The virtual memory model aliases compete for the same cache line, although there
is no consistency problem.

Mach provides a hierarchical virtual memory model in Other solutions allow arbitrary aliases, but rely on
which each process runs in its own address space. Mem- consistency protocols implemented in hardware [Wang
ory can be shared between processes, although there is et al. 89, Knapp & Baer 85] or software [Chao et al. 90].
no requirement that it be shared at the same address Hardware protocols use a reverse translation buffer to
everywhere. An alternative model places all processes determine if a physical address is aliased in more than
in a single, global virtual address space in which nam- one cache line, and allow only the most recent alias to
ing and protection are orthogonal. From an operating be valid. Software protocols allow aliases to be read-
systems perspective, exporting the large address space only. On the first write to a read-only alias, a page-fault
model to applications opens up a large number of re- occurs, the page is mapped writable, and any other
search issues [Chase et al. 92]. These issues are corn- read mapping is broken. On the next read through a
plicated by the fact that global address space machines different virtual address, the write-mapping is broken
are still the exception and not the rule. Consequently, and the alias becomes read-only again. The cache may
we are retaining Mach's hierarchical model for our port require flushing or purging durihg transitions.
to the HP 9000 Series 700.

For the purposes of virtually indexed cache manage- When do aliases occur?
ment, only one distinction exists between the two ad-
dressing models. In the hierarchical model, processes Aliases occur for two general reasons. Either applica-
can share memory at different virtual addresses, and tions explicitly request that physical pages be multiply
therefore possibly different cache lines. In the global mapped, or the operating system uses multiple map-
model, memory is shared at the same address in all pings to implement techniques such as copy-on-write
processes. This eliminates consistency problems due to to reduce the overhead of memory management [Young
sharing (which is defined as aliasing in the next subsec- et al. 87]. In either case, only unaligned aliases pose a
tion), but does not solve the problems that arise during problem, as aligned aliases map to the same line in the
the creation of new mappings or DMA-based I/O (Sec- cache.
tions 2.3 and 2.4). Despite the ability to share memory at arbitrary ad-

dresses, we are aware of few applications that rely on

2.2 The problem with aliases this feature. Even applications that share in sophisti-
cated ways (Appel & Li 91] can generally do so without

An alias occurs whenever the same physical address is specifying the address at which shared data must be
mapped at more than one virtual address. In a virtu- mapped [Li 92]. The name of a piece of virtual merm-
ally indexed cache, where the virtual address is used ory is much less important than other attributes, such
to select the cache line, an alias can result in a data as its contents, pageability, protection, and reference
item being in more than one cache line at a time. It is information.
the job of the cache management system to ensure that In contrast to applications, the operating system it-
references to aliased data yield consistent values, self is a more aggressive client of virtual memory shar-

Write-back caches exacerbate the alias problem. A ing primitives. As a result, it might be more inclined
write-back cache can improve processor performance to require unaligned aliases. In practice, though, this
by reducing the frequency of stores to main memory. turns out not to be case for the s'me reason as with
Only the replacement of a dirty cache line requires a applications. The virtual memory system can therefore
store to memory, enabling physical memory to become generally select aligning virtual addresses for shared
stale with respect to the cache. This can cause reads data. We discuss this characteristic further in Sec-
through one virtual address to return stale values if the tion 4.2.
data was written through another. Writes can also be Nevertheless, there will always be cases where it may
lost if a physical address is dirty in more than one cache be more convenient to place shared memory at specific
line because one or both dirty lines can be written back virtual addresses (such as with shared persistent data
to physical memory in any order, structures). Consequently, the cache management sys-

tem must deal with these aliases correctly.

Some solutions

Some solutions to the alias problem, such as the global 2.3 The problem with new mappings

address space model mentioned earlier, disallow aliases Aliases introduce a potential memory inconsistency
altogether. Others preclude arbitrary aliasing by forc- whenever the number of virtual mappings to a given
ing shared data to reside at virtual addresses that align physical page is greater than one. An additional con-
in the cache, or by requiring that shared data be non- sistency problem is created whenever a physical page
cacheable (Cheng 87]. Two virtual addresses align if is newly mapped, that is, the number of mappings to
they both map to the same cache line. In a physically a physical page changes from zero to one. Unlike the
tagged cache, aligned aliases can be resolved without alias problem, the new mapping problem is not solved
going to memory. In a virtually tagged cache, aligned by the use of a single, global address space.

4

New mappings are a problem because the cache may both physically and virtually indexed caches. We dis-
contain data brought in through an old (but now non- cuss two optimizations that are possible when prepar-
existent) mapping. For example, suppose that virtual ing a newly mapped page in Section 4.
address V is mapped to physical page P, written, and
then unmapped so that P has no corresponding virtual
address. This could happen for any one of a number of 2.4 The problem with DMA-based I/O
reasons, such as the termination of an address space, or DMA-based I/O is another source of cache inconsis-
the remap of P from one virtual address to another. If tency, and hence potential cache management over-
V' is then mapped to P, yet V and V' do not align in the head. The I/O problem is independent of the cache ar-
cache, a read or write through V' could access data from chitecture (virtual or physical) or address space model
page P in physical memory that is older than the data (hierarchical or global).
from page P in the cache. Furthermore, write-back of DMA devices support two memory-oriented opera-
dirty data that was once mapped at V could overwrite tions: DMA-write and DMA-read. DMA-write causes
physical memory that had been written through V'. the device to transfer data into the memory system.

A straightforward way to ensure consistency for new DMA-read causes the device to read data from the
mappings is to clean the cache with a flush or a purge memory system. Prior to issuing a DMA-write, the
when a virtual mapping to a physical page is removed. CPU must ensure that the physical addresses written
The flush or purge ensures that the next time the phys- by the device will not be overwritten by previously dirt-
ical page is accessed, none of its data will be in the ied data still in the cache. Prior to accessing the data,
cache. This approach, for example, is taken in [Cheng the CPU must ensure that old data in the cache is
87]. not shadowing new data in memory.. Prior to issuing

While correct, the approach is unnecessarily eager. a DMA-read, the CPU must ensure that data at the
It is possible that the next time the page is mapped, addresses being read by the device has been flushed to
it would be mapped at a virtual address that aligns main memory.
with the last assigned virtual address. By removing
the d'ata from the cache at unmap, subsequent accesses
will involve slower fetches from main memory, thereby 2.5 The cost of cache management
degrading performance [Chao et al. 90]. On the other In managing a virtually indexed cache, an operating
hand, if the next mapping to the page is not aligned, ea- system has two responsibilities. First, it must strive
ger removal reduces the likelihood that the data would to reduce the frequency of unaligned aliases and new
be naturally replaced by other references. On the HP tokedc the fq cy ined aliae and new
9000 Series 700, for example, a purge or flush of a vir- mappings by taking the cache index function into ac-
tual address can be up to seven times slower when the count when defining virtual to physical mappings. Sec-datais n te ccheas pposd t whn i is't.ond, when unaligned mappings do occur and consis-
data is in the cache as opposed to when it isn't. tency management is required, the operating system

An alternative approach is to delay consistency man- should provide it with as little overhead as possible.
agement until the new mapping is created. It is not For example, because purges and flushes of virtual ad-
necessary to purge or flush the cache of data when a dresses that are not present in the cache should be less
virtual address is unmapped by the operating system. expensive than those that are, they should be delayed
Other structures, however, such as TLB and page table for as long as possible. A delayed cache management
entries, must be invalidated to deny access to the data operation may even be avoided altogether if it is known
in the memory system. to be obviated by a subsequent and otherwise necessary

As with aliases, consistency operations for new map- operation. For example, copying into or zeroing a cache
pings are only required when the new mapping to a line overwrites its contents entirely, making an earlier
physical address does not align with the previous map- purge of stale data in that line unnecessary.
ping to that physical address. If the previous and new To demonstrate the importance of meeting these re-
addresses do not align, the previous address may need sponsibilities, we have measured the performance of
to be flushed and the new address may need to be several benchmark programs on two versions of the
purged. The flush through the previous mapping en- Mach 3.0 kernel running on the HP 9000 Series 700
sures that any writes to it will take effect in memory (Model 720). An operating system server running at
before any reads through the new mapping. The purge user level provides Unix functionality [Golub et al. 90].
of the new mapping ensures that any reads through it The benchmarks are afs.bench, latex-bench, and kernel-
will return fresh data from memory. build. The first is a version of the Andrew File System

The consistency issues of new mappings are orthogo- benchmark [Satyanaranyanyan et al. 85] that runs a
nal to the operating system issues of initializing data in file-intensive shell script. The second formats a version
a newly mapped page. Security concerns dictate that a of this paper using IATEX. The third builds a version of
newly mapped physical page not contain data left over the Mach kernel from about 200 source files.
from a previous mapping, otherwise one process' data The two versions of the kernel are identical with the
could be made available to another process through a exception of their cache management policies. In the
remapping. Proper page preparation must occur with first version of the system (labeled "old"), neither the

5

kernel not the user-level operating system server at- 3 A model for virtually indexed
tempt to align virtual addresses. Both the kernel and
the Unix server run under the mis-assumption that the cache management
cache is physically indexed, while low-level machine-
dependent software guarantees consistency through a The previous section enumerated different situations
simple strategy for cache management. ' On a write that arise in consistency management for virtually in-

to an aliased physical page, all other mappings to that dexed write-back caches. There are cases where caches
page are broken. On a read to an unmapped aliased need to be flushed or purged when the inconsistency
page, any existing writable mapping is broken and the is created (write access to an alias, DMA). In other
faulting address is marked read-only. Whenever a vir- cases, the flush or purge can be delayed (remove a map-
tual to physical mapping is broken, the page is removed ping). Finally, in other cases, the flush or purge can be
from the cache with a flush (if dirty) or a purge. In the avoided altogether (virtual addresses align). These sit-
second version of the system (labeled "new"), which uations also include a large number of cases that can
uses the cache management strategies laid out in the be handled specially to improve performance.
next two sections, careful alignment and delayed con- The problems introduced by aliases, new mappings
sistency are used extensively, and DMA-based I/O can be distilled into the single

Table 1 summarizes the performance of the bench- problem of ensuring that the memory system neverTabl 1 ummaize theperormace f th bech- transfers an inconsistent value to either the CPU or
marks on the two systems in terms of program execu-

tion time and number of cache consistency operations. a DMA device.

The numbers represent the average from the last two In this section we present a consistency model for

of three runs on an otherwise idle machine.' Despite a virtually indexed cache that allows us to solve this

the fact that none of the benchmarks directly stress problem. The model expresses the consistency state of
Mheachts virtual monemory systtheybeh ares atly Uiros each cache line with respect to virtual and physical ad-Mach's virtual memory system (they are all Unix pro- dresses. Transitions between consistency states occur
grams), their indirect reliance on the kernel and the dresses Transitions betwee con te sesorUnix server can incur a significant amount of cache as a result of operations applied to the memory sys-

tem by the CPU and devices. WVe define the states and
management overhead stemming from the cost of hay- transitions in such a way as to prevent the detection of
ing to purge and flush pages from the cache. Overall, data inan inconsistent state, allowing us to delay and
the new system's cache consistency policies improve ex- sometimes omit cache purge and flush operations. We
ecution times by between 5% and 10%. A more detailed also use this model to describe the behavior and cache
performance analysis is presented in Section 5. management requirements for several other cache ar-

We also ran an entirely contrived benchmark, which chitectures.
is not shown in the table, that exposes the benefit
of aligning shared mappings. A single thread repeat-
edly wrote one physical address through two virtual 3.1 A restatement of the problem
addresses. When the virtual addresses were aligned, A correctly functioning memory system must never
a loop of 1,000,000 writes completed in a fraction of a transfer stale data to either the CPU or a DMA-device.
second. When unaligned, the loop took over 2 minutes. Because data is kept only in memory or the cache, stale

data may be transferred for only two reasons:

Program Elapsed Page Page 1. Memory is stale with respect to the cache. The
Time Flushes Purges most recently written data is not in memory. In

(seconds) (xlO3) (x10 3) the case of a CPU access, the most recently written
old new % gain old new old new data may be in a cache line other than the one

s-bench [66.0 59.4 10% 77.41 7.754] 62.09 22.61
latex-paper 5.8 5.5 5% 2.029 .143 1.52 .28 being accessed. In the case of DMA access, the
kernel-build 678.9 620.9 8.5% 602.9 57.88 418.41 171.62 most recently written data may be in the cache.

Table 1: Performance of several common benchmarks 2. The cache is stale with respect to memory. The

using two approaches to consistency management on most recently written data is in memory, but the

two versions of the Mach 3.0 kernel (version MK67) cache is returning stale data, either to the CPU

and Unix server (version UX28). (in the case of a CPU access) or to memory (in
the case of a cache write-back).

We can solve both problems by keeping track of cache
lines that are stale, and by ensuring that stale lines are

IThis version derives its cache management policy from an never transferred out of the cache.
earlier version of Mach worked on by one of this paper's authors
while at the University of Utah. 3.2 A solution to the problem

2The first run, which reflects performance on a cold instruc-
tion, data, and file system buffer cache, took slightly longer due For any virtual address, a cache line can be in one or
to increased file system read activity, four states: empty, present, dirty, or stale (E,P,D or S).

6

An empty cache line does not contain the data at the
virtual address that was used to select the cache line; Operation Target All other similarly
an access through that virtual address results in a cache on target cache mapped but unaligned
miss and a value being transferred from main memory. address line cache lines
A present line is one that contains the correct data at
the virtual address. A dirty line is like a present line, CPU-read E - P E -- E
except that the line has been written by the CPU and P P P P

may therefore be inconsistent with respect to memory D -- D D f•_•fh E
or another cache line. A stale line is one for which the S -'Lge E - P S- S
data at the cached physical address is inconsistent with
a more recently written version either in memory or in CPU-write E - D E - E
another cache line. P - D P - S

Six events can change the consistency state of cache D - D D '_' E
lines with respect to a virtual address. These are CPU- S * E - D S - S
read, CPU-write, DMA-read, DMA-write, Purge, and
Flush. The first four operations can create inconsisten- DMA-read E - E E - E
cies, while the last two can resolve them. P - P P - P

Figure 2 enumerates the state transitions that must D flush E D/flush E
occur during each operation in order to ensure consis- S - S S - S
tency. The first column names the operations that can
be applied to a target virtual address. The second col- DMA-write E - E E - E
umn describes the transitions that must occur for the P - S P - S
target cache line, depending on the target line's cur- D purge' E D -2.rgs E
rent state. The target line is the one selected by the S - S S - S
cache index function for the target virtual address. The Purge E - E E E
third column describes the transitions that must occur - E P - P
for all other cache lines which share the same map- D - E D - D
ping as the target virtual address but are not aligned. S E S - S
Transitions labeled with purge and flush indicate the
cache consistency operation which is required to force Flush E - E E - E
the transition. P - E P- P

Initially, at power up, all cache lines for all virtual ad- D - E D - D
dresses are in the empty state (the cache can be purged S- E S - S
to ensure this). Any operation that can modify state
must be caught and acted upon before the operation Table 2: Cache line state transitions. These transitions
takes place, and the requisite state transitions must oc- must occur to ensure that the memory system never
cur atomically. This guarantees, for example, that an returns inconsistent data to either the CPU or a device.
empty line is not marked present and then read before
dirty data in another similarly mapped line has been
flushed to memory. DMA-read, and CPU-write and DMA-write. DMA

A CPU-read through a cache line in the empty state does not go through the cache, so all cache lines that
must cause that cache line to enter the present state contain the physical address referenced by the DMA op-
(E ---- P), indicating the data's presence in the cache eration share the same transitions. In contrast, CPU-
at the particular line. To ensure that the previously read and CPU-write of a virtual address affect the tar-
empty line returns the most recently written data, any get cache line (and state) differently than the cache
similarly mapped but unaligned cache line in the dirty lines (and states) for similarly mapped but unaligned
state must be flushed to main memory, leaving the virtual addresses. One difference between CPU-write

eflush and DMA-write is that a DMA-write under a dirty
flushed line empty (D- E). A CPU-read of a stale cache line only requires that the line be purged rather
line requires that the line first be purged. than flushed, since the DMA-write will cause the data

A CPU-write forces an empty, present, or dirty line in memory to be overwritten.
to enter the dirty state ([E, P, D] -. D). Other sim- The states themselves are pessimistic with respect
ilarly mapped but unaligned cache lines not in the to consistency and the operation of a cache. Because
empty state must enter the stale state ([PS] -S) we do not consider the cache replacement policy in the
or the empty state (D f'u-2L' E). As with a CPU-read, a transitions, it is possible to have a cache line in the
CPU-write to a stale line requires purging. present state in terms of the model, yet not physically

DMA-read and DMA-write are similar to CPU-read present in an actual cache (although the converse is not
and CPU-write, respectively. Their similarity is re- possible). Such pessimism does not influence correct-
vealed by the set of equivalent transitions for similarly ness because a flush or purge of a physically non-present
mapped but unaligned cache lines for CPU-read and line has no effect on the system.

7

Correctness of the state transitions 9 Set-associative caches. For a set-associative cache,

We can return to the problem restatement -d show the consistency rules remain the same since con-
th he stan returansitions ese pb rectautee n . Tshow sistency within a set is ensured by hardware. That
that the state transitions ensure a correct solution. The is, the physical tags associated with each entry are
transition rules guarantee that neither: guaranteed to be unique within a set.

1. memory is at jith respect to the cache, or * Cache-coherent multiprocessors. The caches in a

2. the cache is stale with respect to memory cache-coherent multiprocessor can be viewed as a
distributed set-associative cache. Equivalent cache

can result in stale data being transferred by the mem- lines from each processor constitute an element of
ory system to the CPU or a device, a set, while hardware ensures inter-cache (intra-
* We avoid the first problem because a cache line can- set) consistency. As with set-associative caches,
not leave the empty state until memory is consistent no changes to the transition rules are required.
with the most recent update. For updates caused by a
CPU-write, consistency is enforced by the flush of the
dirty line. For updates caused by a DMA-write, con- 4 Implementing the model
sistency is implied by the fact that the DMA device
performed the most recent write to memory, and that We now describe an implementation strategy for the
all equivalently mapped cache lines are either empty or cache consistency model described in the previous sec-
stale. tion. Our strategy requires that the hardware have the

We avoid the second problem because stale lines are following characteristics:
never transferred by the cache to either the CPU or
memory. In the first case, a stale line must first be 9 The first address within any virtual page aligns in
purged before it can be read or writte In the second the cache with the first address of any other virtual
case, only dirty data can ever be wri u back by the page if and only if all addresses within those two
cache, and the transitions for CPU- ! and DMA- virtual pages align.
write guarantee that data correspon to a physical
address is dirty in at most one cache ih - (one for CPU- * Reads and writes to individual virtual memory
write, zero for DMA-write). pages can be caught by the operating system ker-

nel.
3.3 Application to other architectures

The first requirement allows us to maintain consis-
Although we are primarily concerned with direct- tency state on a "cache page," rather than a cache
mapped, virtually indexed, write-back caches on a line, basis. A cache page is the set of cache lines onto
uniprocessor, the consistency model can be applied to which the cache index function maps all virtual ad-
other memory system architectures. dresses within a virtual page. A cache page is the same

size as a virtual page, and a virtually indexed cache
"* Write-through caches. In a write-through cache, contains n cache pages, where n is the cache size di-

memory is never stale with respect to the cache. vided by the page size.
Consequently, the dirty state can be replaced with All aligned virtual pages map into the same cache
the present state, and all redundant transitions can page. With cache pages, all cache lines within a cache
be eliminated. There is also no need for the flush page are defined to have the same consistency state.
operation. This enables the use of standard virtual memory hard-

"* Physically indexed caches. With a physically in- ware to implement the state transitions, and reduces
dexed cache, all similarly mapped virtual addresses the amount of cache state information from O(number
naturally align in the cache, so the third column of cache lines x number of virtual addresses in use) to

in Table 2 becomes irrelevant. Only DMA-write O(number of cache pages x number of physical pages).
and DMA-read create consistency problems, and The reduction in state is because of the larger coverage
those are handled with the transitions in the sec- of a cache page, and because cache state information
ond column. As with a virtually indexed cache, is required only for pages that are physically resident.
write-back and write-through physically indexed A virtual memory system already denies access to non-

caches are distinguished only by the existence of a resident pages, so cache consistency for these pages is

dirty state. not an issue.
The second requirement guarantees that we can de-

"* DMA can access the cache. In a system in which tect cache page state changes, and that we can prevent
DMA can access the cache, CPU-read and DMA- stale cache pages from being accessed by the CPU.
read fold into a single read operation, and CPU- These requirements are met by the HP 9000 Series
write and DMA-write fold into a single write op- 700. While it is conceivable that one could build a vir-
eration. The transitions on read and write are the tually indexed cache for which the first assumption does
same as for CPU-read and CPU-write in Table 2. not hold, we are presently aware of no such cache, nor of

8

any compelling reason to build such a cache. Any sys- CacheControl(virtual-address target-va, operation op,

tern with a memory management unit should be able to begin boolean willoverrit. boolean need-data)

satisfy the second assumption. Consequently, no spe- phys-page p - va-to.physical-page(target.va);
cial hardware is required to implement the algorithm. cache-page c - va-to-cachlepage(target.va);
Note that if the hardware supports multiple page sizes,
then the operating system must take additional care to if (P[pJ .cache-dirty) then
ensure that a cache page is mapped only by similarly cache-page w - find-napped-cache.page(Pip]);
sized virtual pages. /* Clean cache if dirty page is not target */

if (op - DNAWRITE OR op - DMA-READ OR v ! c)
4.1 The algorithm then if (need-data) then

flush-cache-page (C);

The cache control algorithm should be invoked during elsepurge~cache..page Cv) ;
any operation that could change the consistency state end
of cache pages. Virtual memory protections are set to P[pJ .cache.dirty - FALSE;
detect state transitions during CPU-reads and CPU- end
writes.3 Operating system software should invoke the end
algorithm before scheduling DMA operations.

Pseudo-code for the algorithm is shown in the Fig- if ((op - CPU.READ OR op - CPU-WRITE)
ure 1. As input, the algorithm takes a virtual address, AND PKp) .stale[el) then
an operation type, and two booleans which indicate if (NOT will-overvrite) then
whether stale and dirty cache data will ever be read. purge-cache.page(c);

The algorithm modifies cache state information and en- epnd.stale c) - FALSE;
sures that stale data is never mapped. The code in Fig- end
ure 1 has been adapted directly from that running in
the machine-dependent module of Mach's virtual mem- /* DNA input operations and write operations force
ory system for the HP 9000 Series 700. Atomicity on * all mapped and stale cache pages to stale, and
a uniprocessor is guaranteed by running the code se- * all mapped pages to unmapped. */
quence with interrupts disabled. As presented, the code if (op - DNA-_RITE OR op - CPU-WRITE) then
is not safe for use on a multiprocessor, although it could P [p].stale - bitwise.or(P[p] .mapped, P p].stale);
be made so with appropriate data structure locking. bitwise-clear(P[p] .napped);

/s For a write, mark the target cache page
DA as not stale, dirty, and mapped. */

Data structures if (op - CPU-WRITE) then
The algorithm relies on several data structures. Each p[p).stale[c] - FALSE;
physical page p in the system is represented by a data P[p) .cachedirty - TRUE;

structure, P[p], that contains a list of virtual mappings end

for the page, P[p].mappings, and the cache page state end
for that page. The cache page state consists of two bit
vectors, PIp].mapped and P[p].stale, and a single dirty if (op -- CPU-READ) then
bit, P[p].cache-dirty. P [p].mapped[c] - TRUE;

Each bit in the vectors corresponds to a particu- end
lar cache page. The bit vector P-].mapped indicates
which cache pages have been mapped by the CPU, and /* Set mappings for all virtual addresses that

therefore which cache pages may contain data from a * map to p to prevent inconsistencies from
given physical page p. The bit vector Pfp].stale indi- * being perceived, to detect subsequent accesses,

cates which cache pages may contain stale data from a * and to allow the current operation to complete.*/
given physical page p. The P[p].cachen irty bit for a foreach (virtual-address v in P[p] .mappings) do

c - va.to.cache.page(v);
physical page p indicates that the physical page could if (P[p] .stale[c]) then
be dirty within a cache page. That dirty cache page c set-protection(v, NO_ACCESS);
is given by the entry for which Pp].rmapped[c] is true. else if (NOT P[p) .lapped~c]) then
The P(p].cache.dirty bit is cleared when the dirty cache set-protection(v, NO_ACCESS);
page is removed from the cache with either a flush or a else if (op - CPU-WRITE) then
purge. set-protection(v, READWRITEACCESS);

else if (op -- CPU-READ) then
set.protection(v, READONLYACCESS);

end
end
end CacheControl.3The algorithm assumes that illegal page accesses, such as a

write to a text page, have been filtered out in earlier stages of Figure 1: Pseudo-code sequence implementing consis-
the kernel's fault handler. tency for a virtually indexed write-back cache.

9

Together, the bit vectors and the dirty bit encode the Two simple optimizations
consistency state of every cache page c with respect to The code sequence in Figure 1 includes two simple opti-
all virtual addresses that map to that physical page and mizations that reduce the frequency of purge and flush
cache page. This encoding is shown in Table 3. operations. These are driven by the two parameters

The CPU's access through any virtual address V, vill-overwrite and need-data. In order, their use is
where V maps to physical page p. and cache page described below.
c, is determined by P•p].mapped(c] together with A straightforward way to eliminate stale data from
P[p].cache-dirty. If P[p].mapped[c] is false (the cache the cache is to purge it through the virtual address at
page is empty or stale), then CPU access through V which the data is known to be stale. Another way to
must fault. This allows the consistency state to be up- eliminate the stale data, though, is to completely over-
dated by the cache control algorithm. If PM].mapped[c] write it with new data from the CPU. In particular, if
is true but P•p].cache.dirty is false (the cache page is a stale line is known to become completely overwrit-
present), then write access through any V that maps ten before it will be read, then a preliminary purge is
to p must be disabled in order to catch the write, and not necessary. This situation commonly arises when
to mark the cache pý. 0 e as dirty and other cache pages the virtual memory system prepares a page of memory
as stale. with either a copy-page or zero-fill operation. In both

The hardware does not guarantee consistency be- cases, the CPU completely overwrites the page with
tween separate instruction and data caches. Conse- new data before any other access to the page occurs.
quently, virtual addresses containing data never align In such cases, the page can be allowed to leave the stale
with those containing instructions, even when they are state without a preliminary purge (will-overwrite is
equivalent. In the implementation, it is necessary to true).
maintain cache page state for both caches, and to in- A second optimization relates to the assumption that
terpret a virtual address in the context of the cache in dirty data is also useful data. This assumption is not
which it will be found. For simplicity, though, the al- always valid. For example, consider the case of a new
gorithm shown in Figure 1 assumes that a read access mapping where a physical page that had previously
includes both instruction and data fetches, been mapped into one address space is being remapped

into another, and then copied into or zeroed. Clearly,

Explanation of the code the previous contents of the physical page are no longer
useful. Therefore, if the page is dirty, it can be purged

The code in Figure 1 is broken into six stanzas. The instead of flushed (need-data is false).
first stanza computes the physical page and target
cache page corresponding to the target virtual address. 4.2 Eliminating inconsistencies

The second stanza removes the contents of a dirty
cache page in the case that it is not the tar- Although the algorithm delays consistency operations
get cache page. A dirty page can be mapped and handles aligned mappings, it does not reduce the
through only one cache page, and the operation frequency of unaligned virtual addresses. We found
find.mapped.cache.page returns that cache page. that such accesses occurred frequently in Mach because

The third stanza ensures that the target cache page the system was initially designed for use on machines
is not stale. This is only relevant for a CPU access. with physically indexed caches where virtual address

The fourth stanza ensures that writes into the mem- selection was not a factor in cache performance. Conse-
ory system cause all mapped pages to become stale quently, we made three changes to the system to reduce
and thus no longer mapped. In the case of a CPU- the frequency of unaligned virtual mappings. These
write, the written page is marked as mapped and not changes allow the virtual memory system to select the
stale, and the physical page is marked as dirty. The ac- virtual address at which a physical page is mapped so
tual implementation includes an optimization that sets that it aligns with the previous virtual address bound
P[pl.cache.dirty whenever the vi'rtual memory system to that physical page. None of the changes have af-
sets the page-modified bit yet the number of mapped
bits is one. Finally, note that the data structures used
by the algorithm lend themselves to efficient state mod- Cache
ification. For example, all mapped (present) pages can
be marked stale with a bitwise-or of P[p].mapped and ptage Pp.apdc ~]soec ~]ccez
P[p].stale into the P•p].stale vector, and a bitwise-clear Empty false false
of the P[p].mapped vector. Present true false false

The fifth stanza sets the mapped bit for the page on a Dirty true false true
CPU-read to indicate that the cache page may contain Stale false true
data from the physical page.

The final stanza sets the virtual memory page pro- Table 3: Correspondence between cache page state and
tections for all mappings to the physical page to be data structures maintained by the algorithm.
consistent with the cache page state.

10

fected the system's functionality, only its performance, We changed the Unix server so that these pages can

which is discussed in the next section. be allocated at addresses determined by the virtual

Pages passed during IPC cperations memory system, thereby aligning.

A large number of virtual memory remapping opera- 5 Performance
tions correspond to physical pages being passed as part
of interprocess communication (IPC) messages. The We have measured the three benchmark programs
kernel's IPC code transfers a physical page from one described in Section 2.5 on the HP 9000 Series 700
virtual address to another [Young et al. 87]. The ker- (Model 720). We ran each benchmark on six successive
nel is free to select any destination virtual address, so configurations of the Mach 3.0 kernel. Table 4 shows
choosing one that aligns with the source address guar- the performance statistics averaged over the last two of
,,ntees that no cache management operation is neces- three consecutive runs of each benchmark on an oth-
s;,ry. The destination virtual address, though, was orig- erwise unloaded system. The table shows the elapsed
inally chosen according to a first-fit strategy, so the time, operation counts, and average cycle counts across
source and destination virtual addresses rarely aligned. varioup configurations for each of the programs. The
Consequently, the old virtual address, which would gen- cycle counts were gathered using the processor's on-
erally be dirty since it contained data generated by the chip cycle counter.
sender, would be flushed, and the new virtual address The configurations ranged from one having only min-
would be purged. imal cache consisLency machinery (that described as

We modified the IPC code to select an address in the "old" in Section 2.5 and labeled "A" in the table) to
receiver that aligns in the cache with the sender's. one having all of the machinery described in the pre-
Preparing new pages with copy and zero-fill vious section (that described as "new" in Section 2.5

and labeled "F" in the table). Each successive ver-
The kernel can prepare a new page with data us- sion provides a cumulative and more efficient solution
ing copy and zero-fill. The first operation copies to consistency management than the previous by in-
data from one physical page to another, and the sec- cluding an additional optimization. In order, we (B)
ond clears a physical page by filling it with zeros, delay flush and purge operations until a virtual ad-
Page preparation in Mach is split between machine- dress is reused (+lazy unmap), (C) allow the kernel
independent and machine-dependent components. The to select virtual addresses for multiply mapped pages
machine-independent component deals with virtual ad- so that they align in the cache (+align pages), (D) sup-
dresses and initiates page preparation in response to port aligned page preparation (+aligned prepare), (E)
demands on the virtual memory system. The machine- replace flushes with purges when old data will never be
dependent component deals with physical pages and used (+need-data), and (F) eliminate purges when the
implements the copy and zero-fill operations. With destination cache page is being completely overwritten
a virtually indexed cache, a page should be prepared (+will-overwrite). The bottom Lwo rows of the table
through a virtual address that aligns with the ultimate show total counts and times for the three benchmarks
mapping for the page. This consideration is unimpor- running on the final and most efficient configuration.
tant on a machine with a physically indexed cache, how- In the benchmarks, all DMA activity is due to disk
ever, so the preparation routines (which were designed access. There are no disk reads, which correspond to
assuming such a cache) were not passed the ultimate DMA-writes, for either of the first two benchmarks.
virtual address. This is because all file system reads are satisfied by

We extended the machine-dependent interface so the Unix buffer cache. The third benchmark, which
that the machine-independent layer could pass the ul- accesses substantially more file system data than the
timate virtual address down to the page preparation other two, does require disk reads. The low cyle count
routines. A similar extension was introduced by the for DMA-read flushes is because the file system's write-
Tut project [Chao et al. 90]. behind policy introduces delays between the dirtying

and subsequent flushing of a buffer cache block, so the
dirty lines tend to be written back naturally.Shared pages in the Unix server

Mach's user-level Unix server allocates and shares sev- 5.1 Interpretation of results
eral pages of memory with each Unix process. These
pages are expected to be used as a high-bandwidth, Careful cache management improves application per-
low-latency channel for passing information between formance. Moving downward over successive configu-
applications and the Unix server. In the initial ver- rations for a given benchmark shows that performance
sion of the system, the Unix server requested that the improves by delaying cache co,.sistency operations, by
shared pages be allocated at a specific virtual address in aligning pages, and by exploiting the semantics of data
its own and each process' address space. These pages use. For example, the decrease in page purges between
did not align, so accesses resulted in frequent consis- configurations "A" and "B" reflects the fact that a
tency faults. physical page is often unmapped, and then remapped

11

VM Consis- Total DMA Data to I Page Page DMA
Mapping tency Page Read Inst. Purges Purges WriteProgram Tie Faults Faults IFlushes Flushes Copies (Instr.) (Data) Purges

secs cnt avg cnt avg cnt avg avg cat avg cnt avg
1x0 a cyc x 103 cyc x10 3 cyc x 10 3 cyc x 103 cyc x103 cyc x l0 3 cyc x103 cyc

A. afs-bench 66.0 60.65 1507 24.07 2165 77.41 1327 0.726 316 0 0 18.30 1099 43.79 387 0 0
B. +lazy unmap 64.1 60.61 1786 23.74 1413 70.36 1148 0.703 313 7.012 827 4.874 1105 42.86 295 0 0
C. +align pages 62.0 60.58 1712 0.046 1288 54.45 1328 0.695 304 7.058 831 4.803 1106 42.76 294 0 0
D. +aligned prepare 59.5 60.56 1272 0.046 1293 25.19 605 0.681 311 7.058 701 4.755 1107 14.25 297 0 0
E. +need-data 59.9 60.59 1266 0.046 1338 7.753 669 0.695 322 7.058 703 4.767 1103 31.80 470 0 0
F. +wilLoverwrite 59.4 60.58 1264 0.046 1336 7.754 66610.696 310 7.058 701 4.857 1105117.75 613 0 0
A. atx-apr 5.8 1.481 1335 0.963 2235 2.029 1253 0.056 311 0 540 0.273 1126 1.250 456 0 0
B. +lazy unmap 5.8 1.477 1647 0.952 1480 1.649 1232 0.052 324 0.088 540 0.003 1127 0.485 301 0 0

C. +align pages 5.8 1.474 1469 C 0 1.107 1621 0.052 303 0.088 547 0.003 1120 0.361 296 0 0
D. +aligned prepare 5.6 1.479 1135 0 0 0.423 729 0.055. 305 0.088 539 0.002 1122 0.161 296 0 0
E. +need-data 5.7 1.472 1131 0 0 0.140 448 0.052 304 0.088 534 0.003 1120 0.310 1197 0 0
F. +wilLovervrite 5.5,1.481 1139 0 0 0.143 463 0.055 310 0.088 560,,0.002 1118,0.278 1310 0 0
A. kernel-build 678.9 4 0 8 .5 1388 249.3 2223 602.9 1354 5.306 310 0 0 81.11 1098 337.3 392 0 0
B. +lazy unmap 661.3 407.7 1772 247.6 1457 541.9 1115 5.365 324 52.06 608 28.31 1104 309.1 298 1.000 368
C. +align pages 641.9 407.7 1706 1.001 1381 405.4 1278 5.258 326 52.58 608 27.06 1105 303.0 294 1.549 400
D. +aligned prepare 626.8 408.8 1204 1.002 1402 197.6 473 5.283 321 52.58 552 30.61 1104 101.1 297 1.572 477
E. +need-data 627.6 408.9 1211 1.015 1406 57.88 531 5.300 318 52.57 553 29.77 1104 239.6 390 1.600 497
F. +will-overwrite 620.9 407.6 1199 0.986 1409 57.88 529 5.305 328 52.58 549 29 .02 1104 142.6 452 1.537 462
Total for "F" 685.8 469.7 36021.032 2745 65.78 1658 6.056 948 59.72 18101 33.88 3327 160.6 2375 1.537 462
Seconds for "F" 1685.8111.34 1.6%1 0.03 0% i 0.72 .10%1 0.04 .01%l 0.68 .10%ll 0.75 .11%l 1.51 .22%1 0.01 0%

Table 4: Performance of three benchmark programs using variously configured versions of Mach 3.0 (MK67) running
on a 50Mhz HP 9000 Series 700 (Model 720).

through an aligned virtual address. The slight reduc- cache consistency state transition that cannot be in-
tion in purge time for the data cache occurs because ferred by some other mapping fault. Consistency faults
the delayed purge reduces the likelihood that the page's are the result of the cache being virtually indexed, and
data is in the :ache. That no such reduction occurs for should be counted as bookkeeping overhead separate
the instruction cache appears to be an artifact of the from purge and flush overhead. The table shows that
720's implementation which requires constant time to mapping faults remain almost constant across configu-
purge the instruction cache, regardless of its contents. rations, but that consistency faults drop substantially.

The reduction in flushes between configurations "D" In the end, the total bookkeeping overhead for the three
and "E" shows that dirty data is often left in the cache benchmarks is a small fraction of the total mapping
never to be accessed again. This data can be purged, overhead and insignificant compared to total execution
rather than flushed. As expected, the decrease in data time.
cache flushes is offset by an equivalent increase in data
cache purges. No increase occurs for purges of the in- Page flushes need occur no more often in a virtually
struction cache because that cache never contains dirty indexed cache than in a physically indexed one. For
data. Execution time does not improve because the 720 configuration "F," the number of page flushes is equal
appears to purge no more quickly than it flushes. 4 to the number of DMA-read flushes plus the number

The overhead to maintain consistency state is low. of pages copied from data space into instruction space.
The Mach kernel lazily evaluates many virtual memory Both of these operations require a flush. The flushes

operations. For example, machine-dependent page ta- due to copying into instruction space arise because of
ble entries are not created until they are first faulted the interaction between separate instruction and data

on, thereby enabling sparse but space-efficient virtual caches, and the operating system's buffer cache. When
address spaces [Rashid et al. 87]. This approach intro- a process faults on an instruction page, the file system
duces a certain number of mapping faults, which occur copies the faulted page from its buffer cache into a page

every time a virtual page is first accessed by an ad- in the faulting process' address space. That copy oper-

dress space. These faults occur regardless of the cache ation writes into the data cache, yet the page is needed

architecture. In contrast, a consistency fault occurs in the instruction cache. The page must therefore be
flushed from the data cache before it can be used. The

whenever a reference to a virtual address requires a destination virtual page, unless empty in the instruc-

tion cache, must also be purged. This problem exists
4 We have verified the 720's unusual flush and purge behavior with physically indexed caches as well, because dual

independently of the benchmarks. caches effectively create an aliasing problem.

12

The "A" configurations all show no data to instruc- naturally handles the many kinds of inconsistencies and
tion space copies because the file system first unmaps optimizations that arise in the management of a virtu-
the dirty data cache page before mapping it into the ally indexed cache. The state of a cache page depends
faulting address space. The unmap forces an immedi- only on its previous state and the current operation,
ate flush which is reflected in the column for total page and the state transitions can be encapsulated entirely
flushes, rather than in the column for data to instruc- within a short code sequence. Moreover, adapting that
tion space copies. sequence to alternative architectures is straightforward,

Virtually indezed caches should support a fast page given the observations made in Section 3.3. In con-
purge operation. For the benchmarks running under trast, previous systems, which do not maintain cache
configuration "F," page purges represent the largest page state in any explicit manner, have dealt with in-
cost component of virtually indexed cache manage- consistencies and optimizations on a case-by-case basis.
ment. They occur almost 200,000 times during the As a result, optimizations requiring global information,
three benchmarks. Although some of the purges are such as "does a cache page need to be flushed before
necessary during DMA-writes (.8%), and when copy- it can be used as the destination of a DMA-write," are
ing instructions from data space to instruction space difficult to implement, and are therefore less likely to
(17.5%), most (about 80%) are due to the creation of be found.
new mappings when a virtual address is assigned to a Table 5 highlights some of the functional differences
random physical page from the kernel's free page list. between several operating systems implemented for ma-
Some of these purges could be eliminated by reduc- chines with virtually indexed caches. The CMU system
ing the associativity of virtual to physical mappings is the one described in this paper. The Utah system is
through the use of multiple free page lists.5 The ar- a version of Mach that behaves as the one described in
chitecture, however, should also provide support for ef- Section 2.5. The Tut project [Chao et al. 90] merged
ficient cache purges. It should be possible to purge Mach's virtual memory system into HP-UX, HP's ver-
an empty, present, or dirty line, and possibly page, in sion of UNIX. The Apollo system is an implementation
one cache cycle since no interaction with memory is re- of OSF/1 done by the Apollo Systems Division of HP.
quired. A fast purge would also benefit systems with These four systems have been implemented on HP PA-
a physically indexed cache, since purges that cannot RISC machines. The Sun system is an implementation
be eliminated through reduced associativity are neces- of 4.2 BSD for Sun-3 200 series machines [Cheng 87].
sary there as well. In all, the total savings for the three The column labels describe the behavior of each sys-
benchmarks given a single cycle cache page purge would tem with respect to consistency management. All five
be about 2.26 seconds (.33%) out of 685.8 seconds. systems handle unaligned aliases, although the Sun sys-

In summary, the total overhead for virtually indexed tem limits accesses through unaligned aliases to well-
cache management across the three benchmarks in con- behaved operating system code fragments. Otherwise,
figuration "F" is 1.53 seconds (.22%). This is the aliases must be uncached. The Utah, Apollo, and Sun
amount of time spent handling consistency faults (.03 systems clean the cache whenever the last mapping to
seconds) and purging the data cache for reasons other
than DMA (1.50 seconds). An additional 1.48 seconds systems delay the consistency operation until the map-
(.21%) is required for operations that must occur re- ping could be reused (lazy unmap). In Tut, if the new
gardless of the cache architecture. This is the amount virtual address for a page is the same as the old oneof time spent flushing and purging the cache to drive (as opposed to aligned) then no purge or flush is re-
DMA devices, and to copy from instruction space to quired. Otherwise the cache pages corresponding to the
data space. old and new virtual pages are removed from the cache.

The Utah system makes no attempt to select aligning
virtual addresses for multiply mapped pages. Tut does

6 Related work so only for program text pages. Tut, like the CMU sys-
tem, attempts to choose preparatory mappings so that

Several operating systems have been implemented for they align with eventual mappings when preparing a
architectures with virtually indexed caches. As men- page with copy or zero-fill. In situations where ad-
tioned in Section 2, these systems either disallow dresses do not align, the CMU kernel eliminates many
aliases, allow constrained aliases, or support full aliases cache control operations by exploiting the semantics
through cache flushing and purging. The most impor- of new mappings (need-data) and page preparation
tant difference between these other systems and our (will-overwrite).
own is not so much in the optimizations that they The systems can also be viewed in terms of the cache
support, but the style with which they ensure consis- consistency states that they maintain for data in the
tency. Our approach, based on state transitions for cache, physical memory, and virtual memory. None of
cache pages with respect to virtual and physical pages, the Utah, Apollo or Sun systems maintain a stale state,

as evidenced by the fact that they purge or flush the
5This reduction in associativity is only an optimization, and cache whenever a mapping is broken, such as on a write

not a requirement [Chiueh & Katz 92]. to an aliased page or during the removal of a virtual to

13

y Ag UReferences
Handle to page Uses "will- [Accetta et al. 86] Accetta, M. J., Baron, R. V., Bolosky, W.,

unaligned Lazy align pre. "need. over Golub, D. B., Rashid, R. F., Tevanian, Jr., A., and Young,
System aliases unm page pare data" write" M. W. Mach: A New Kernel Foundation for Unix Develop-
CMU Yyes H Yes Yes Yes ment. In Proceedings of the Summer 1986 USENIX Confer-
Utah Yes No No No No No ence, pages 93-113, July 1986.
"Tut Yes Equal Text Yes No No
Apollo Yes No Yes No No No [Appel & Li 91] Appel, W. and Li, K. Virtual Memory Primi-

Sun Memory No Yes No No No tives for User Programs. In Proceedings of the Fourth Sym-
posium on Architectural Support for Programming Languages

Table 5: Characteristics of several different systems for and Operating Systems, pages 96-107, April 1991.

machines with virtually indexed caches. [Chao et al. 90] Chao, C., Mackey, M., and Sears, B. Mach on a
Virtually Addressed Cache Architecture. In Proceedings of the
First Mach USENIX Workshop, pages 31-51, October 1990.

(Chase et al. 92] Chase, J. S., Levy, H. M., Baker-Harvey, M.,
physical mapping. The Sun system appears to main- and L.zowska, E. D. How to Use a 64-Bit Virtual Address
tain only present and empty states for physical pages, Space. Department of Computer Science and Engineering
although in some cases, such as pageout, it uses the Technical Report 92-03-02, University of Washington, Febru-

fact that a physical page is dirty to avoid a redundant ary 1992.

cache flush. Tut associates state with a virtual address, [Cheng 87] Cheng, R. Virtual Address Cache in Unix. In Pro-
rather than with a cache page, as evidenced by the fact ceedings of the 1987 Summer Usenir Conference, pages 217-ratharthonl e hal rather an, alvig ned, b224, 1987.
that only equal, rather than aligned, aliased virtual ad- [Chiueh & Katz 92] Chiueh, T. and Katz, R. Beating The Ad-
dresses avoid cache management operations. dress Translation Bottleneck. In Proceedings of the Fifth Sym-

posium on Architectural Support for Programming Languages
and Operating Systems, October 1992. This issue.

7 Conclusions [DEC Alpha 92] DEC Alpha. Alpha Architecture Technical
Summary. Digital Equipment Corporation, 1992.

Virtually indexed write-back caches create consistency [Golub et al. 90] Golub, D., Dean, R., Forin, A., and Rashid,
R. Unix as an Application Program. In Proceedings of the

problems. We have described these problems infor- Summer 1990 USENIX Conference, pages 87-95, June 1990.
mally, and have then defined a model that attacks the [Jouppi 88] Jouppi, N. P. Architectural and Organizational
consistency problems at their core by ensuring that the Tradeoffs in the Design of the MultiTitan CPU. In Proceed-
memory system never returns a stale value to either de- ings of the 15th Annual Symposium on Computer Architec-
vices or the CPU. Our consistency model lends itself to ture, pages 281-289, June 1988.

an implementation that relies on the virtual memory [Knapp & Baer 85] Knapp, V. and Baer, J.-L. Virtually Ad-

system to trap memory accesses that could create or dressed Caches for Multiprogramming and Multiprocessing

reveal inconsistencies. Environments. In Proceedings of the 18th Annual Hawaii In-
ternational Conference on System Sciences, pages 477-486,

The performance of our approach on the HP 9000 Se- 1985.
ries 700 demonstrates that careful cache management [Kohn 89] Kohn, L. Description of the Intel i860 64-bit RISC-
is an important factor in overall system performance. based Microprocessor. IEEE Micro, 4(9), August 1989.
Moreover, an analysis of the operations required to en- (Lee 89] Lee, R. B. Precision Architecture. IEEE Computer,
sure consistency reveals that a virtually indexed cache pages 78-91, January 1989.

need not incur significantly more overhead than a phys- [Li 92] Li, K., March 1992. Personal communication.
ically indexed one. [Rashid et al. 87] Rashid, R., Tevanian, Jr., A., Young, M.,

Our experience with implementing Mach's virtual Golub, D., Baron, R., Black, D., Bolosky, W., and Chew, J.
memory system on a machine with a virtually indexed Machine-Independent Virtual Memory Management for Paged

Uniprocessor and Multiprocessor Architectures. In Proceed-
cache has led us to conclude that there exist no quan- ings of the 2nd Symposium on Architectural Support for Pro-
titative or qualitative reasons to shy away from such gramming Languages and Operating Systems, April 1987.
machines, as they offer reduced cycle times with in- (Satyanaranyanyan et al. 85] Satyanaranyanyan, M., Howard,
significant software cost and complexity. J., Nichols, D., Sidebotham, R., and Spector, A. The ITC Dis-

tributed File System: Principles and Design. In Proceedings of
the 10th ACM Symposium on Operating Systems Principles.

Acknowledgements pages 35-50, December 1985.
[Wang et al. 89] Wang, W.-H., Baer, J.-L., and Levy, H. M. Or-

ganization and Performance of a Two-level Virtual Real Cache

Jerry Huck, Michael Mahon, Bart Sears, and John Hierarchy. In Proceedings of the 16th Annual Symposium on

Wilkes of Hewlett-Packard, Jim Hayes of NeXT, and Computer Architecture, pages 140-148, May 1989.

Tom Mistretta of Apollo provided insight into the prob- (Young et al. 87] Young, M., Tevanian, Jr., A., Rashid, R.,
Golub, D., Eppinger, J., Chew, J., Bolosky, W., Black, D.,lems of virtually indexed cache management. They, and Baron, R. The Duality of Memory and Communication

along with Jeff Chase, Mike Hibler, Ed Lazowska, Hank in the Implementation of a Multiprocessor Operating System.
Levy, Chris Maeda, Steve Schwab, Dan Stodolsky and In Proceedings of the 1 I th A CM Symposium on Operating Sys.

Matt Zekauskas provided valuable feedback on earlier tems Principles, pages 63-76, November 1987.

drafts of this paper.

14

